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This paper presents a method for computing the physical states in superconducting thin 
films under the influence of a parallel uniform external magnetic field. The governing 
equations are the Ginzburg-Landau equations which in general possess multiple solutions 
and the physical states are those which minimize the total energy. In our approach the energy 
functional is used to generate a gradient flow and the physical states are obtained in the large 
time limit. The numerical results completely verify the Meissner effect and the fine structure 
of the solutions exhibits the occurrence of a symmetric nucleation of superconductivity at 
intermediate fields. 0 1990 Academic Press. Inc. 

1. INTR~OUCTI~N 

Slightly below the transition temperatures, the behaviour of superconducting 
materials is governed by the Ginzburg-Landau (GL) differential equations [ll]. 
Although these equations were originally introduced phenomenologically, 
Gorkov [ 121 was able to derive them theoretically from his formulation of the 
Bardeen-Cooper-Schrieffer (BCS) theory where the microscopic structure of a 
superconductor is replaced by a complex scalar field 4 which is an order parameter 
representing the density of superconducting electron pairs and interacting with the 
excited electromagnetic vector potential A. It is more often the GL equations, 
rather than the BCS theory itself, which have led to technological advances, since 
they allow practical calculations for various samples. However, on the other hand, 
except for some extreme cases, the exact solutions of the GL equations are difficult 
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to obtain due to the complexity of the system and, in general, suitable approxima- 
tion methods must be resorted to. In particular, perturbative analysis has shown 
the destruction of superconductivity in thin films by a magnetic field exceeding 
a critical external field strength which increases with decreasing thickness of the 
films [ 1 l] and that there exists a third critical field in type II superconductivity, so 
that, at which, a thin superconducting layer appears on the surface of the film [ 191; 
a shooting method has been employed to find the properties of a class of solutions 
to the thin film GL elquations [16]; a direct variational method has been used to 
study the interactions of superconducting vortices in the absence of an external field 
[15, 181; and, more recently, the Monte Carlo simulation has widely been applied 
to the lattice versions of the models in two, three, and four dimensions 
[6, 7, 13, 14-J. All of these are meant to compute the stationary or minimization 
points of the total energy E(& A). 

In this paper, we take a new approach to the above problem. Roughly speaking, 
we will find the stationary points of E(& A) in the t + cc limit of the gradient (or 
heat) flow (d(t), A(t)) generated by the equation (d,, A,)= -6E(& A), where 6 
denotes the Frechet differentiation. Methods of this nature have extensively been 
used earlier, for example, in the study of the existence of harmonic maps [9, lo]. 
The purpose of the present paper is to focus exclusively on computing the solutions 
of the one-dimensional thin film GL equations. It is hoped that our method here 
may still be explored further to apply to the models in higher dimensions. 

We will consider a superconducting film of thickness 21 in a parallel (or tangen- 
tial) constant magnetic field H. In normalized units and reduced variables, the GL 
equations are [S, 173: 

(b”(X) = i&d’ - 1) + /U&2& 

A”(X) = g12A, - I < x < I; (1.1) 

9’( f 1) = 0, A’(fl)= 1, 

where, now, 4 and HA are real scalar fieds representing the order parameter and 
the electromagnetic potential respectively, A> 0 is a dimensionless coupling con- 
stant so that ,J < 4 or > $ characterizes type I or II superconductors, and the excited 
magnetic field in the film is given by B(x) = HA’(x). Equations ( 1.1) are the 
Euler-Lagrange equations of the total energy (cf. [S]) 

%W=f jl,dx{tQ’)’ +iH2([A’-I,2+A2~2)+;(~2-l)‘}. 

In general, Eqs. (1.1) may have multiple solutions at different energy levels and the 
real physical states are those with the least energy value. 

If H = 0, the only energy minimizers are 

d(x)= *1, A(x) = sinh x/cash 1. (1.2) 
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Our purpose is to compute the energy minimizers at an arbitrary value H = H, # 0. 
The method is as follows. 

Define a time-dependent external field H(t) E C[O, 00) connecting the values 
H = 0 and H = H,, i.e., H(0) = 0 and H(t) = Ho for t > some t, > 0. Insert H = H(t) 
into the energy E( 4, A) and switch on the time-dependence of (4, A) according to 
the convention as mentioned before: 

(41, A,) = -WA A). (1.3) 

The equation (1.3) leads to an initial value problem 

9,=d.,-n~(~‘-1)-~H2(t)A2~, 9,=d.,-n~(~‘-1)-~H2(t)A2~, 

A, = A,, - d24 A, = A,, - d24 -I<x<l, -I<x<l, t > 0; t > 0; 

4,(+L t)=O, 4,(kL t)=O, A,( +t t) = 1, A,( +t t) = 1, t > 0, t > 0, 
(1.4) (1.4) 

4 = do(x), 4 = do(x), A = A,(x), A = A,(x), -I<X<l, -I<x<l, t = 0. t = 0. 

If the initial data (&,, A,) are chosen to be physical, namely, (&,, A,) satisfies 
(1.2), then (1.3) or (1.4) determines the time-evolution of the field configurations in 
a superconducting film (cf., e.g., [2]). It is not hard to prove that [20], as t + cc, 
the solutions of (1.4) tend to those of (1.1) which should be the desired least energy 
solutions at H = H, by the consistency of the time-evolution equation (1.3) and the 
least action principle, although a mathematically rigorous justification has not been 
worked out yet. 

In this paper we will integrate Eqs. (1.4) numerically by the backward (implicit) 
finite difference scheme. Analysis shows that the convergence of the semi-discretized 
equations is of the second order and that of the backward difference scheme the 
first order in time and second order in space. A series of numerical results are 
presented. These results indicate that at small or large external fields, the Meissner 
effect is complete, that is, the superconducting films behave either like diamagnetic 
bulk materials or like normal conductors; at intermediate external fields, there is a 
symmetric nucleation of superconductivity in the middle of the films. For large 
values of 2 > 0, completely superconducting and normal regions co-exist and, as 
E. + co, the superconducting core can be squeezed into an arbitrarily narrow region 
which implies that a nonlinear desingularization phenomenon [4] occurs in a finite 
one-dimensional sample in analogy with that in two dimensions [l, 31. This work 
shows that the gradient flow method may provide us a very efficient and powerful 
computational tool in calculating the thin film superconductivity and Eq. (1.3) can 
indeed yield a correct description of the time-development of the physical solutions 
of the problem. 
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2. THE FINITE DIFFERENCE SCHEME 

In order to have a suitable function space setting, we introduce a translation 

&‘=A-xx, do=Ao-x. 

Now Eqs. (1.4) become 

4, = $,, - @W - 1) - nWt)(~ + xJ2 $4 

dt = dx, - fj’(d +x), -I<X<l, t>o; 

4,(&Z, t)=d(+L t)=O, t > 0, 
(2.1) 

4=403 d=d& -I<X<l, t = 0. 

In what follows, we shall use the notation Dk = ak/axk, Hk( -I, I) = Wk’2( -1, I), 
and denote the norms of Hk( - 1, I) and Ck[ - Z, 11 by 11 /I k and 1 I k (k = 0, 1,2, . ..). 
respectively. It has been shown in [20] that, for any &,, .J& E H’( -1, f) and con- 
tinuous bounded function H(t) on [0, co), Eqs. (2.1) have a unique global classical 
solution. 

Let us first discretize the spatial interval (-I, i) by M equidistant gridpoints 

xi= 1(2i- M- 1)/M, i = 1, . ..) A4 

with spacing h = 21/M. 
For a sufficiently smooth function w(x) on [-I, 11 with the boundary condition 

Dw( + I) = 0, the central difference scheme leads to the following standard second- 
order approximation 

SUP ID2w(xJ-(--sw)il <Ch* ID4wlo, 
IGiG. 

where 

(2.2) 

is an M x M matrix, w = (w(x,), . . . . w(x,,,,))‘, and C> 0 is a generic constant. 
With the notation w = ($*, . . . . tiM)‘, a = (a, f .‘.f a,Y, wo = (40(x1), *.., lo(x,))L, 
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and a,= (dO(x,), . . . . &(x,,,,))‘, we may discretize (2.1) into a system of ordinary 
differential equations in the form 

fv= -sY-P,3.y, (2.3a) 

fu= -SC+Q+u-R,, t>o; (2.3b) 

W=W0, U=Cl,, t = 0, (2.3~) 

where 

Pti,l=~diag{($:-1)+H2(t)(cr,+xl)2,..., (~~-1)+H2(t)(a,+x,)‘}, 

Q, = dias{ll/:, . . . . $‘,> 

are diagonal matrices and R, = (+Tx,, . . . . 1,9$x,,,)‘. The system (2.3) can then be 
integrated numerically by standard methods. 

Our convergence result for the above semi-discretized problem is stated as 
follows. 

THEOREM 2.1. Suppose do, do E Hs( -1, I) and (4, &)(x, t) and (w, u)(t) are the 
unique global solutions of Eqs. (2.1) and (2.3), respectively. Then there exist constants 
6, E>O depending only on f, I, IIQls, Il&olls, and SUP,~~ [H(t)1 such that for any 
T> 0, we have the pointwise error estimate 

sup max{ Id(Xiy t) - t+bi(t)l, Id(xi, t) - ai } < 6h2TeCT. (2.4) 
l<.iLM,O<I<T 

The inequality (2.4) will be established in Section 3. In the rest part of this 
section, we only show that the initial value problem (2.3) has a (unique) global 
solution for any M > 0. 

LEMMA 2.2. Set K=max(l, I~olo} and K’=max{l, Amoco}. For a (local) solution 
(w, a)(t) of Eqs. (2.3), there hold the folZowing bounds 

SUP max{ I$At)l) dK sup max{ Icti(t)l} d K’. 
130 i rao I 

Proof: Assume there is a T>O such that maxi IGi( > K. Choose 
i,: 1 d i, < M and to E (0, T] to achieve 

f $i,(t0) = SUP ma4 Ill/i(t)l >. 
Osr<T i 

Suppose first tiiO( to) > 0. Letting i = i, and t = to in (2.3a), we have - (SW),, < 0 and 
d$,/dt 20. So (P+,.I~(to))j,dO. This is false. Similarly one verifies ~,(t,)~O. This 
contradiction implies the validity of the bound for I+bi(t)l. 
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Let us now prove the bound for /ai(t In fact, from (2.3b), we have 

where a,? = cli f K’ and fl’ = (/If, . . . . /I&)‘. 
Obviously, fl+ 20 at t = 0. We claim: BT 20, i= 1, . . . . M. 
Define yi = p,+ e”, E > 0. Then y satisfies 

f Yi 2 -(sY)i- (ti? + E)Yir t 3 0. (2.5) 

It can be seen that y,(t) 20, i= 1, . . . . M, t 20. Otherwise, suppose there is some 
T>O which makes min,.i,,(yi(T)} ~0. Therefore we can choose i,: 1 <i,<M 
and to E (0, T] such that 

yio(to)= min min {y,(t)}. 
o<r<7- l<i<M 

It is easily verified that, at t = to, - (Sy), 20 and dy,/dt 6 0, which yields 
y,,( to) > 0, since yiO satisfies (2.5) and E > 0. This is a contradiction. Thus the conclu- 
sion /I,? 3 0, i = 1, . . . . M follows. Similarly, one establishes /?,: < 0, i = 1, . . . . A4. 

The lemma is proved. 

In particular, the global solvabilty of Eqs. (2.3) follows. 

3. PROOF OF CONVERGENCE 

In this section we obtain the error control (2.4). 
In UP, define the integral inner product and the associated norm by 

Let u E [WM. There holds 

M-1 

(II, Sll),,j=hp’ C (Uj-Ui+1)*. 
,=l 

For given u E R”, choose io: 1 < i. < M be such that 

uf, = min{u:, . . . . u’,}, 

(3.1) 
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Then, by virtue of (3.1) we have 

M-i 112 
.;a;+ ( 

M-I 

1 (u,+ui+,)2h 

j= I ) ( 
jF, ("j-uj+l)2 hp')"'2 

d Ilull $/2f + 2 ~~u~~ (u su)“2. (!I) 3 (/I) (3.2) 

This simple inequality will be used in establishing the pointwise error estimate (2.4). 

LEMMA 3.1. Suppose &,,sz~~EH~(--I, I) (k> 1) and (4, d)(r) is the unique 
classical solution of Eqs. (2.1). There exists a constant C, depending only on 
1, 2, SUP, IH(t Il&,llk, and Iltdollk such that 

Proof: The case k = 1 has been proved in [20]. The general case is easily 
verified by induction. 

Under the condition of Theorem 2.1, we put 

4(t) = (4(,x,, t), ..., d(-u,, t)lL, d(t) = (d(X,) t), . ..) 22(x,, t))‘. 

Then, by virtue of (2.2), we can rewrite Eqs. (2.1) in the form 

$d=-Sd-Qp-R6+q2, t >o; (3.3) 

+=wo, d=Cl,, t = 0, 

where Pd3.,, Q,, and R, are as defined in Section 2 and Ill(t), q,(t) satisfy 

II’I,(~)ll(,)~ Ilrlz(t)ll (,r) G Ch* (3.4) 

with C > 0 depending only on I, %, ll&l~ 5, and Il&J 5 as can be seen from 
Lemma 3.1. 

From Eqs. (2.3) and (3.3) one obtains the governing equations for the errors 
5 = Q - w and & = JZZ -a as follows: 

ii= -sy-(Q~~-Qe,u)-(RB-RR,)+112, t >o; (3.5) 

S=O, i=o, t = 0. 
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On the other hand, Lemmas 2.2 can be used to establish the estimates 

II~,,dQ-~,,.WlI(h)~ c,(ll5ll(h)+ llill(h,h 

IIQ,JJ - Q$Jll (h) d c,(ll~ll(h,+ lKll(h,h 

/I& - R,I/ c/z) 6 C, IMvz,, 

(3.6) 

with C, depending only on K, K’, and supI a0 IH(t 
Using (3.4)-(3.6) the fact that S > 0, and the Gronwall inequality, we 

immediately reach the following error control in the integral norm: 

IIS(f)ll fhj + Ili(t)ll$, 6 C2 Th4eCjTy O<t<T, (3.7) 

where C,, C, > 0 depend on C, C, . 
To get the expected pointwise error estimate, we need to find suitable bounds for 

(5, %hh, and (5, SSh,. 
From (3.4)-(3.7) and a simple interpolation inequality, it follows that 

d - lW~ll~/I,- Il~~ll:~,+~II~~,~~-~~,,.Wll~h)+ ll11,Il(h)) 11~511(/1, 

+ (IlQ,d- Ql~d(w + II&-RJ,IIw + ll~,ll~,,,) IIW,,, 
< C4h4eCsT, O<t<T 

with C4, Cs > 0 depending only on C, CZ, C3, which implies the bound 

Finally, combining (3.2), (3.7), and (3.8), one achieves the following pointwise 
error control 

sup max{ Iti(t lii(t)l} d TC6h2eC7T, 
I<r~A4,0<r<T 

where Cg, C, > 0 are determined by I and Cj (j = 2, . . . . 5). 
The proof of Theorem 2.1 is complete. 

Now the semi-discretized system (2.3) may further be discretized in the time 
variable by various finite difference schemes. For our purpose, we choose to use the 
backward or implicit difference scheme to discretize the time. In this manner, 
although (2.3) is nonlinear, a maximum principle argument enables us to prove the 
stability of the scheme in the pointwise norm and, then, the convergence will follow 
readily. Such an analysis is presented in the next section. A series of numerical 
results obtained by this scheme and their interesting physical implications will be 
detailed in Section 5. 
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4. ANALYSIS OF THE BACKWARD DIFFERENCE SCHEME 

On a given finite time interval [0, T], T> 0, let k = T/N (where N> 0 is an 
integer) be the discretized time step and 

t, = jk, j=O, 1, . . . . N 

the mesh points. With the notation 

4: = 4(x,, t,), dc4i’ = &9+(x;, t,), i=l A4, 9 ..., j=O, 1, . . . . N, 

A*ui = Ui+ , - 2ui + 24~. , ) i=l M, 2 . . . . 

and after replacing 9, and G’, at x=x;, t = tj+, by (@+I -$J)/k and 
(a!{+‘-c&)/k, we can rewrite (2.1) as 

$.!+‘=$!+rA2@+1 , -Ak([4i’+‘]* 

-1 +H*(t,+,)[d:+‘+xi]*)q+~+‘+p~+‘, 

Ai+‘=.d!+rA2~/+1-k(~i’+1)2(~~+‘+~,)+~~+’, (4.1) 

j=O, 1, . . . . N- 1; 

8 = 40(X,)> ,oey = dO(Xi), 

where r=k/h*, c$‘,=#(, ~~‘,=c$‘,+,,s!&=G!{, &‘a=d&+,,i=l,..., M, and 
pi, v{ satisfy 

kE,= max{ 1 &I, Iv:1 > 6 C(k* + kh*) 
i, .i 

X m,<xuf<i<T bLl~ 14A P”9L P4~l 1. 
. . . . . 

Therefore, neglecting the error terms p{, v!, and replacing #I, J$‘{ by II/{, a{ in 
(4.1), we have the following implicit scheme 

~I”‘=ll/l+rA2~i+‘-~k([11/j+‘12 

-1 +H2(tj+1)[aj+1 +xJ2)$;‘+‘, 

a{+‘=aj’+rA*a{+’ -k(ll/j’+‘)* (cxj+‘+x,), 

j=O, 1, . . . . N- 1; 

$P = dO(Xi), ap = ST&( Xi), 

(4.2) 

with the boundary condition $i=${, $‘,=$‘,+,, ~$=a:, ai,=ai,+,. 
The following lemma concerning the stability of the backward scheme (4.2) is 

easily proved by a maximum principle argument. 
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LEMMA 4.1. With the notation K=max{l, ~&lo} and K’=max{l, IAZ&]~} (see 
Lemma 2.2), we have I$;‘[ <K and Icx/I <K’. 

Proof: Suppose otherwise there were i,: 1 6 iO d A4 and j,: 1 < j, < N such that 

&$‘=sup$/> K. 
i. i 

Then the structure of Eq. (4.2) would lead to a contradiction under the substitution 
j + 1 =jO, i = iO. Hence II// < K. Similarly one shows $: 2 -K. 

We now verify the bound for ICC{ I. Suppose sup CC: > K’. Let j,: 1 < j, < N satisfy 

jo=min{j’= 1, . . . . N 1 cr,id=max z/f, 
i. i 

Inserting j, = j + 1, i = i, into (4.2) we find ($/i)* (CC/; + xi,) < 0. This violates our 
assumption. By the same way, we can prove inf a: > -K’. So the lemma follows. 

From Eqs. (4.1) and (4.2), the governing equations for the errors </ = 
#~-*!,[~=&~-a~ are 

r A*tj+’ -,;+I g/+1, 

r A*c!+’ J/+Lgj+‘, (4.3) 

irP=O, ip=o, 

where 

f;+l= -[;+E,k([&+‘]*-1 +H*(t,i+,)[dC4J+1+X;]*)qbJ+1 

-~k([~:+‘]2-l++2(tj+,)[~!+‘+x,]2)~:+l-~L:+’, 

g;+’ = -~:‘+k(qq2(d~+‘+Xi)-k($y (ul’+‘+x;)-vj+‘. 

Using the boundary condition iJ6 = <{, [L = t.h + , , ci = ii, CL = [$, + r, and a 
maximum principle argument in (4.3) as in [IS], we find 

max lt/+‘l Gmax Ify+‘l, max \{/+‘I <max Ig/+‘l. (4.4) 1 

Therefore, it follows from Lemma 4.1 and (4.4) that 

max It/“1 Gmax /<{I +~k(3K2+supH2(t)(K’*+21K’+1*)+ 1)max ],!+‘I 
I I I 

+2ikKsupH*(t)(K’+I)max I[:“1 +max I/A{+‘], 
, 

max li/+‘l<max Ii;‘1 +ZkK(K’+I)max I,:+‘/ +kK*max l[/+‘l+max IvJ+iI. i i I i I 
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Define 

H=max{~(3K+supH2(t)(K’*+21K’+12)+ 1) 

+2K(K’+1), 21KsupH2(t)(K’+I)+K2}. (4.5) 

Given EE (0, l), let k be sufficiently small so that k0 d 1 -E. Consequently, the 
initial condition (7 = 0, <p = 0 implies the inequality 

max I,/+‘1 +max I[!“1 ~(1 -k0)-’ ( max I[:1 +max l[/l)+2k(l-k0)P’ E, 
I I I 

< 2E,T( 1 - fITIN) N < ~E,TE “Tf(l &‘, 

It may be verified by Lemma 3.1, Eqs. (2.1), and the embedding 

that the conditions do, &a E H5( -1, I) and sup,( IH( + IQ(t)l) < s ensure that the 
quantity 

sup max(Id,,(x, t)l, I4,(4 r)l, P”dk r)l, ID4.d(,~, ?)I> 
-l<r~l.t20 

can be bounded by a constant depending only on 1, JU, II&II 5, l11;4011 5, and 
sup,(lH(t)l + Ifi(t)l). Hence, we have proved 

THEOREM 4.2. Suppose (4(x, t), S(x, t)) is the solution qf Eqs. (2.1) where 
do, &EH~(-I, I) and H(t) is a C’ ,finction so that sup,,,(lH(t)l + Ifi(t)l)< w 
and { ($I, XI)} the sequence determined by the backward scheme (4.2). Let 8 he as 
defined in (4.5). For anq’ E E (0, 1 ), we have the error estimate 

max{ I#(x,, r,) - $/I, )&‘(x,, ri) - K; I } 6 6(k + h2) TE WI’ -~‘.‘, 

where k0 6 1 --I: or N > 8T/( 1 -E) and 6 > 0 is u constant depending only on 
1, 4 lIdol15, lItdol15, and su~,,~(lH(f)l + Ifii(f)l). 

Note. Since our purpose is to calculate the physical states of a superconducting 
film under the influence of an external source H = If, # 0 by connecting these states 
with the states at H = 0, so do and & are determined by (1.2): 

do= il, & = sinh x/cash l-x. 

Therefore K = 1, K’ = max { 1, I }, and constant 8 is easily evaluated. 

5. NUMERICAL RESULTS 

In this section we present a series of numerical results obtained by the gradient 
flow method analyzed in the previous sections. Although, in principle, the physical 
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solutions of Eqs. (1.1) are to be found in the t -+ cc limit of the solutions of 
Eqs. (1.4) where &,, A, satisfy (1.2), our computations carried out up to a large 
value of the coupling constant 1” = 1000 show that the actual convergence time is 
quite short. In all of the examples here, the approximations are already impressively 
satisfactory after a run with T= 5-164. This suggests that our method may provide 
an efficient and practical tool for computing various aspects of thin film super- 
conductivity. 

Recall that, the normal and superconducting states are characterized respectively 
by solutions of Eqs. (1.1) satisfying d(x) = 0, A’(x) = 1 and 4(x) $0, A’(x) $1. In 
our experiments below we are interested in the phase transitions from normal to 
superconducting states, and vice versa, as one varies the external magnetic field H 
and the coupling constant 2. A sufficient condition has been established earlier [20] 
which ensures the occurrence of the superconducting phase. This condition reads 

12H2 6 $. (5.1) 

Occasionally, we will use this condition as a reference for choosing the strength of 
the external field. 

The numerical scheme used in this section is the backward finite difference 
method analyzed in Section 4. Let us first explain briefly the computational 
procedure taken here. 

With the notation of Section 4, put 

U’= (I){, . ..) $‘,, a:, . ..) EL), j=O, 1 9 . . . . N. 

We may write Eqs. (4.2) as 

LqUjf’)= U’+r(U’+‘), (5.2) 
where 

Lk’( Uj) = ($’ -r A21c/j I ,, . . . . *L--r A’$‘,, a{---r A’cc(, . . . . xi,-r A’ah), 

and the form of Z( Vi) is self-evident. Knowing Uj, we must determine Uj+ ‘. Since 
(5.2) is an implicit equation, an iterative method has to be introduced. The iterative 
sequence {U j+ l,m}~=O is defined as follows. 

UJ+ 1.0 = uj 

mu 
j+l.m+l)= uj’+(f(uj+1”+1, Uj+l,m), g(uj+l.m+l, uj+I.m)), 

with 

f(U j+l,m+l ) uj+‘y 
= -~~(H2(tj+,)[~~+‘~“+.i]2~j+‘~m+1 + [(t+b{+“m)2- 11 ${+l’m)(vr,, 

AU j+l,m+l it I,m ,u ) 
= -,([~~+‘~“]‘q+‘~“+’ + [$~+‘q2xi)~,. 
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The iteration terminates when 

+sup ~txj+‘.m+‘-@;+~~m <lo-7 (5.3) 

and Z(U” ‘) is th en approximated by (f(Ui+l*m+', Uj+‘,“‘), g(Ui+‘,‘“+‘, 
Ui+‘,“‘)). In all of our experiments, the accuracy (5.3) can be reached after 
5-10 steps. This completes one step in the implicit iterative scheme (5.2). 

For the scheme (5.2), our calculation terminates if the accuracy 

IU I+‘- Gill < 10-S 

is achieved, which means that a steady state solution is found: the discretized 
gradient flow { Uj} converges to a physical state of the superconducting film. 
Obviously, in different parameter regions, the required time for the computation 
varies greatly. 

For convenience, in what follows, we will fix I = 1 unless otherwise stated. 

EXAMPLE 5.1. We first examine that the numerical solutions of Eqs. (1.1) at 
H = H, obtained by connecting the states at H = 0 through the gradient flow (1.3) 
are independent of the choice of the “connecting function” H(f): H(0) = 0, 
H(t)= H,, tasome t,>O. 

For definiteness, let us set 1= 0.3 (type I superconductivity), M = 101, and Y = 50 
in the scheme (4.2) or (5.2). If Ho = 2, (5.1) is violated and we may expect to find 
a normal state solution. Two connecting functions are taken: 

F(t)=min{t, H,}, G(t) = min { 0.5t + sin 2m, H,}. (5.4) 

F(t) = H, after t > 2 and is strictly monotone in [0,2) but G(t) = Ho for t 2 6 and 
oscillates in [0, 6). For both cases, the numerical solutions converge to the normal 
state 4 = 0, A =x (the computation terminates at t = 164). 

Figure 5.la illustrates the energy decay corresponding to different connecting 
functions. Initially, the two curves differ greatly, but they soon approach the lowest 
energy level E = 0.15. 

Figure 5.lb displays the behaviour of the excited magnetic field B(x, t) = 
H(t) DA(x, t) with H(t) = F(t). As time t increases from t = 0.48 to 164, the 
transition from superconducting states to the normal state develops. Eventually, the 
external field completely penetrates the film and superconductivity is quenched. The 
curves from the bottom to the top are ordered by increasing time. 

EXAMPLE 5.2. Let the data 2, M, r be the same as in Example 5.1. Choose 
H = H, = 1 and the connecting function H(t) = F(t) (cf. (5.4)). From (5.1) we know 
that the film is in the superconducting phase. In our computation, the energy 
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FIG. 5.1.(a) Energy decay curves corresponding to two different connecting functions: Although the 
energies differ initially, after a period of time they both reach the least energy level E= 0.15 of the system 
at H = 2 and the sample then stays in the normal phase. Thus, the evolution history is not important 
in the Ginzburg-Landau theory. (b) Development of the state from the completely superconducting 
phase to the normal phase: Eventually no superconducting electron pairs can survive and the sample is 
penetrated by the external field like a normal conductor. 
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FIG. 5.2.(a) Behaviour of the order parameter 4 at different time stages: In the large time limit the 
flow approaches a least energy solution of the system and the sample is in a superconducting state so 
that a symmetric nucleation of superconductivity is maintained. The strength of the external held is 
neither weak enough to leave the film in the completely superconducting states nor sufftciently strong 
to destroy superconductivity. (b) Partial penetration of the external field: The regions near the surfaces 
of the film are almost in the normal state due to the influence of a sufficiently strong external source and 
the penetration strength attains its minimum at the center of the sample. 
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decays after a short period of time and the numerical solutions converge to a super- 
conducting state (the program halts at t = 33.25). 

Figure 5.2a shows the behaviour of the order parameter 4 at different time stages. 
The curves from the top to the bottom are ordered by increasing time 
t = 0.49-33.25. At t = 0.49, since the external field is still weak, the film is almost in 
the completely superconducting state and the density of the Cooper pairs stays 
close to its maximum value 4 = 1. As time develops and the external field becomes 
strong, the superconducting electron pairs can hardly survive near the boundary of 
the film and they tend to gain a greater density in the middle of the sample. This 
is known as the nucleation of superconductivity at intermediate external fields. 

In Fig. 5.2b, the graphs of the excited field versus the spatial variable x are 
ordered from the bottom to the top by increasing time t = 0.49-33.25. At low field, 
namely, t = 0.49, the external field may only achieve a partial penetration near the 
surfaces and it is completely screened in the middle of the film. As time develops, 
the external source becomes strong and the solution steadily approaches a stable 
state. This state represents a superconducting phase. There is a complete penetra- 
tion of the external field near the surfaces and the excited field rapidly decays to its 
minimum at the center of the sample. The magnetic screening is partial. 

0.00 I. a.. I . . . . I. . . . 1 
0.0 0.5 

H 2 &I-2.0 
1.5 2.0 

FIG. 5.3. Three branches of energy curves versus the values of the external magnetic held: Letters C, 
N, S denote the energy curves of the computed solutions, the normal state, and the completely super- 
conducting states (given by (1.2)), respectively. Physical experiments say that the C curve should simply 
coincides with the S curve (at low fields) and with the N curve (at high fields) since L = 0.3 corresponds 
to type I superconductivity. Our results here show that there is a slight deviation of the Ginzburg- 
Landau theory from experimental facts at intermediate fields. 
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EXAMPLE 5.3. Figure 5.3 is the energy curves versus the values of the external 
magnetic field H of the computed solutions of (1.1) the normal state, and the 
completely superconducting states given by (1.2). Here J = 0.3. These curves are 
denoted by the letters C, N, and S, respectively. It is seen that the energy of the 
least energy solutions (the C curve) of Eqs. (1.1) is below the normal state energy 
level E = 0.15 (the N curve) if H < 1.75. Therefore the sample is in the superconduc- 
ting phase. While, for H > 1.75, the C curve joins the N curve and the sample is in 
the normal phase. When H < 0.6, the C curve coincides with the S curve and the 
film is in a completely superconducting state. In the range 0.6 < H < 1.75, the C 
curve is strictly below the N and S curves and the sample is in a superconducting 
state different from those given by (1.2). The magnetic screening is partial even at 
the center of the film and a symmetric nucleation of superconductivity occurs. 
These global energy curves provide a very clear picture of phase transitions in terms 
of changes of the external field and completely verify the Meissner effect. 

EXAMPLE 5.4. As a comparison, we remark that the energy curves versus exter- 
nal fields are qualitatively different for type II superconductors. Let us choose the 
data 2 = 10, M= 101, r = 50. The computer results are summarized in Fig. 5.4. 
As in the above example, there are two critical fields, H,, = 0.5 and H,., = 3. For 

0 1 
H = O.d-3.6 

3 

FIG. 5.4. Energy curves versus external fields in type II superconductors: The magnetic behaviour of 
the sample is now characterized by two critical lields H,, = 0.5 and H,, = 3 which substantially differs 
from that in type. I superconductors. When H > H,, , the realistic energy curve C will bend away from 
the S curve and finally joint the N curve. 
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H < H,.,, the sample is in a completely superconducting state and behaves like a 
piece of diamagnetic material. In the range H,., < H < H,.*, the energy curve C of the 
computed solutions bends away from the curve S and the Abrikosov mixed states 
[ 1 ] are maintained. Finally, when H > H,,, the C curve joins the N curve and the 
normal phase is reached. This is a characteristic phenomenon of type II super- 
conductivity. It is seen that, in Fig. 5.3 both C and S curves are convex (although 
there is an inflection point on the C curve near the N curve) and tend to stay close, 
while, in Fig. 5.4, the C curve is concave after H = H,, and tends to stay away from 
the S curve. In fact, Fig. 5.3 indicates a small deviation of the Ginzburg-Landau 
theory from physically observed facts in type I superconductors but Fig. 5.4 tells us 
exactly what really happens in type II superconductors. 

EXAMPLE 5.5. We are interested also in the behaviour of solutions when the 
coupling constant i takes very large values. Results have been obtained with fixed 
external field H = Ho = 5 and the values of 2 varying in the range l&1000. We still 
choose M= 101. Note that the expression of 8 linearly depends on % if 1” is large 
and that, by Theorem 4.2, we must require ri small in order to achieve convergence 
of the backward difference scheme (4.2) or (5.2). In our computer experiments, we 
find that rl = 500 seems to be optimal for the problems discussed here. The calcula- 
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0.0 

-1.0 -0.5 0.5 l.u 

FIG. 5.5. Large I behaviour of superconducting films: Although the field H = 5 is strong enough to 
quench superconductivity in samples with I < 10, large 1 materials can still maintain a superconducting 
state in regions near the center. In this case superconducting and normal states co-exist. As i grows, the 
superconducting core is squeezed into a very narrow region. 
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tions terminate at t = 5-10. The curves of the order parameter 4 in Fig. 5.5 are 
ordered from the bottom to the top by increasing values of ,? = 10, 50, 100, 500, 
1000. It is seen that, for ,?= 10, the superconducting phase is destroyed and the 
normal state dominates. The 4 curve is represented by a horizontal line 4 = 0. For 
larger IV, a superconducting region may be maintained near the center of the sample 
but finite normal conducting layers also exist. This shows the co-existence of both 
superconducting and normal regions in a film at intermediate fields in type II 
superconductivity. As 1 increases, the peak of the 4 curve grows and the density of 
the Cooper pairs gains a very large value at the center of the sample but the super- 
conducting region is greatly squeezed into a narrow band. This suggests the 
occurrence of a nonlinear desingularization phenonmenon [ 1, 3,4]. 

Note. The numerical studies in this section have been restricted to a fixed 1 (21 
is the thickness of the film) and treated the external field H as a varying parameter. 
Similar discussions may be made if one varies 1 and it can be shown that small 
or large I favours superconducting states or the normal state as was originally 
predicted in the celebrated work of Ginzburg and Landau [ 111. 
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